Evidence for an elastic projection mechanism in the chameleon tongue.
نویسندگان
چکیده
To capture prey, chameleons ballistically project their tongues as far as 1.5 body lengths with accelerations of up to 500 m s(-2). At the core of a chameleon's tongue is a cylindrical tongue skeleton surrounded by the accelerator muscle. Previously, the cylindrical accelerator muscle was assumed to power tongue projection directly during the actual fast projection of the tongue. However, high-speed recordings of Chamaeleo melleri and C. pardalis reveal that peak powers of 3000 W kg(-1) are necessary to generate the observed accelerations, which exceed the accelerator muscle's capacity by at least five- to 10-fold. Extrinsic structures might power projection via the tongue skeleton. High-speed fluoroscopy suggests that they contribute less than 10% of the required peak instantaneous power. Thus, the projection power must be generated predominantly within the tongue, and an energy-storage-and-release mechanism must be at work. The key structure in the projection mechanism is probably a cylindrical connective-tissue layer, which surrounds the entoglossal process and was previously suggested to act as lubricating tissue. This tissue layer comprises at least 10 sheaths that envelop the entoglossal process. The outer portion connects anteriorly to the accelerator muscle and the inner portion to the retractor structures. The sheaths contain helical arrays of collagen fibres. Prior to projection, the sheaths are longitudinally loaded by the combined radial contraction and hydrostatic lengthening of the accelerator muscle, at an estimated mean power of 144 W kg(-1) in C. melleri. Tongue projection is triggered as the accelerator muscle and the loaded portions of the sheaths start to slide over the tip of the entoglossal process. The springs relax radially while pushing off the rounded tip of the entoglossal process, making the elastic energy stored in the helical fibres available for a simultaneous forward acceleration of the tongue pad, accelerator muscle and retractor structures. The energy release continues as the multilayered spring slides over the tip of the smooth and lubricated entoglossal process. This sliding-spring theory predicts that the sheaths deliver most of the instantaneous power required for tongue projection. The release power of the sliding tubular springs exceeds the work rate of the accelerator muscle by at least a factor of 10 because the elastic-energy release occurs much faster than the loading process. Thus, we have identified a unique catapult mechanism that is very different from standard engineering designs. Our morphological and kinematic observations, as well as the available literature data, are consistent with the proposed mechanism of tongue projection, although experimental tests of the sheath strain and the lubrication of the entoglossal process are currently beyond our technical scope.
منابع مشابه
Off like a shot: scaling of ballistic tongue projection reveals extremely high performance in small chameleons
Stretching elastic tissues and using their recoil to power movement allows organisms to release energy more rapidly than by muscle contraction directly, thus amplifying power output. Chameleons employ such a mechanism to ballistically project their tongue up to two body lengths, achieving power outputs nearly three times greater than those possible via muscle contraction. Additionally, small or...
متن کاملFunctional implications of supercontracting muscle in the chameleon tongue retractors.
Chameleons capture prey items using a ballistic tongue projection mechanism that is unique among lizards. During prey capture, the tongue can be projected up to two full body lengths and may extend up to 600 % of its resting length. Being ambush predators, chameleons eat infrequently and take relatively large prey. The extreme tongue elongation (sixfold) and the need to be able to retract fairl...
متن کاملBallistic tongue projection in chameleons maintains high performance at low temperature.
Environmental temperature impacts the physical activity and ecology of ectothermic animals through its effects on muscle contractile physiology. Sprinting, swimming, and jumping performance of ectotherms decreases by at least 33% over a 10 degrees C drop, accompanied by a similar decline in muscle power. We propose that ballistic movements that are powered by recoil of elastic tissues are less ...
متن کاملThe scaling of tongue projection in the veiled chameleon, Chamaeleo calyptratus.
Within a year of hatching, chameleons can grow by up to two orders of magnitude in body mass. Rapid growth of the feeding mechanism means that bones, muscles, and movements change as chameleons grow while needing to maintain function. A previous morphological study showed that the musculoskeletal components of the feeding apparatus grow with negative allometry relative to snout-vent length (SVL...
متن کاملThermal sensitivity of motor control of muscle-powered versus elastically powered tongue projection in salamanders.
Elastic-recoil mechanisms can improve organismal performance and circumvent the thermal limitations of muscle contraction, yet they require the appropriate motor control to operate. We compare muscle activity during tongue projection in salamanders with elastically powered, ballistic projection with activity of those with muscle-powered, non-ballistic projection across a range of temperatures t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings. Biological sciences
دوره 271 1540 شماره
صفحات -
تاریخ انتشار 2004